Tunable Magnetoresistance in Organic Spin Valves

Jian Shen

Department of Physics, Fudan University

Inorganic Spin Valves and GMR

Organic Spin Valves

V. Dediu *et al.*, Solid State Comm 122, 181 (2002)

Z. H. Xiong et al., Nature 427, 821 (2004)

Magnetoresistance in Organic Spin Valves

Spin Injection

Z. H. Xiong et al., Nature 427, 821 (2004)

- ~ 100nm organic layer
- Negative MR
- A few tens percent at low T

Unclear issues

Charge transport mechanism

- Spin-dependent transport mechanism
- Inconsistency with MR

MR is not large, and not tunable.

Origins of Controversies

Controllable system is needed

Part I

Control Interdiffusion between Co and Alq₃

Comparing Conventional and BLAG Spin Valves

Active device area ~ 1 mm x 2 mm **Buffer-layer-assisted growth**

Alq₃ Thickness Dependence of MR

MR of BLAG spin valves is much larger than that of conventional ones.

Phys. Rev. Lett. 104, 236602 (2010)

Transport Through an Organic Layer

Injection-limited current

Fowler-Nordheim (FN) model for tunneling

V. I. Arkhipov *et al.,* JAP v84 p848 (1998) M. A. Baldo *et al.*, PRB v64 p085201 (2001)

Model Fitting of J-V curves

SCLC with screened Frenkel effect

If the potential of the ion
trap centers is *screened*

$$V(x) = -\frac{e^2}{4\pi\varepsilon\varepsilon_0|x|} \left(-\frac{|x|}{\lambda}\right) - Ex;$$

$$J_{\uparrow\uparrow(\uparrow\downarrow)} = D_{\uparrow\uparrow(\uparrow\downarrow)}\varepsilon\varepsilon_0 \frac{V^2}{d^3} \exp\left(\frac{3.74}{kTd} \frac{eV\lambda_{\uparrow\uparrow(\uparrow\downarrow)}}{\left(1+4.2\lambda_{\uparrow\uparrow(\uparrow\downarrow)}\sqrt{\pi\varepsilon\varepsilon_0 V/ed}\right)}\right)$$

Only two fitting parameters, spin-dependent carrier injection density D, and screening length

 \wedge

d (nm)	$D_{\uparrow\uparrow}$	$N_{{\it tot}(\uparrow\uparrow)}({ m cm}^{-3})$	$D_{\uparrow\downarrow}$	$N_{tot(\uparrow\downarrow)}({ m cm}^{-3})$	$D_{\uparrow\downarrow}/D_{\uparrow\uparrow}$ MR
93 (BLAG)	9.1688E-19	1.45379E19	3.9472E-18	2.77563E19	4.31 → 300
93 (conv)	3.8752E-16	3.41038E19	8.3410E-16	5.90169E19	2.15 🕂 35
135 (BLAG)	2.0580E-15	4.25549E19	2.2035E-15	4.68603E19	1.07 🕂 13
135 (conv)	1.4661E-15	4.33485E19	1.4790E-15	4.37145E19	1.01 🕂 4

Spin-dependent carrier injection density correlates with MR

Part II

Interface #2 (Interdiffusion)

Bulk properties (mobility & structure)

Interface #1 (spin injection)

A New Avenue towards Colossal MR

Transport Measurements

Nanodots induced Colossal MR (~ 85000%)

MR = (R(H) - R(0))/R(H)

Three Types of MR

Part III

Interface #2 (Interdiffusion)

Bulk properties (mobility & structure)

Interface #1 (spin injection)

Interfacial Control by Ferroelectricity

Hysteretic Behavior of MR

MR-V Hysteresis Originates from the FE Minor Loop

MR Sign Reversal After PE Loop

Summary

For vertical organic spin valves:

- On top of the organic film, magnetic nanodots can serve as top electrodes to minimize interdiffusion and lead to giant MR
- Inside the organic film, magnetic nanodots can be used to create spin-dependent resonant tunneling effect and lead to colossal magnetoresistance
- Underneath the organic film, inserting a ferroelectric layer can control the sign of MR

Acknowledgement

Da-li Sun

Mei Fang

Xiaoguang Zhang

Lifeng Yin (Fudan Univ) Yanmei Wang (Fudan Univ) Wenting Yang (Fudan Univ)