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Jarzynski equality

xxxxH(λ): system Hamiltonian, λ: classical parameter

Λ = {λ(t)|0 ≤ t ≤ τ}:
protocol
w : Work performed on the
system

〈e−βw 〉 = e−β∆F Jarzynski, PRL 78, 2690 (1997).

〈·〉: average over realizations of the same protocol
∆F = F (τ)− F (0), F (t) = −β−1 lnZ (t), Z (t) = Tre−βH(λ(t))

Jensen’s inequality =⇒ 〈w〉 ≥ ∆F 2nd law



Crooks relation

Λ = {λ(t)|0 ≤ t ≤ τ} forward
protocol

Λ̄ = {λ(τ − t)|0 ≤ t ≤ τ} back-
ward protocol

pΛ(w) = e−β(∆F−w)pΛ̄(−w) G.E. Crooks, PRE 60, 2721 (1999)

pΣ(w): pdf of work w during protocol Σ = Λ, Λ̄

Crooks ⇒ Jarzynski



Applications

Pulling macromolecules in order to determine free energy
differencies between different confirmations: Liphardt et al.,
Science 296, 1832 (2002); Collin et al., Nature 437, 231 (2005);
Douarche et al., Europhys. Lett. 70, 593 (2005).

N=200

ic

i +Nc b N-i  -Nc b

N-i c

S. Kim, Y.W. Kim, P. Talkner,
J.Yi, Phys. Rev. E 86, 041130
(2012).

Jarzynski: ∆F = −β−1ln〈e−βw 〉
Crooks: pΛ(w) = e−β(∆F−w)pΛ̄(−w) ⇒ pΛ(w) and pΛ̄(−w) cross
at w = ∆F



Work

Classical thermally isolated system:

w = H(z(τ), λ(τ))− H(z , λ(0))

=

∫ τ

0
dt

dH(z(t), λ(t))

dt

=

∫ τ

0
dt
∂H(z(t), λ(t))

∂λ
λ̇(t)

Note that a proper gauge must be used in order that the
Hamiltonian yields the energy.

z(t): solution of the Hamiltonian equations of motion

ż(t) = {H(z(t), λ(t)), z(t)}

with z(0) = z : point in phase space



Work characterizes a process; it comprises information from states
at distinct times. Hence it is not an observable. As such it would
only present information about the state at a single instant of time.

The measurement of the quantum versions of power- and
energy-based work definitions requires different strategies.



1. Two energy measurements:
One at the beginning, the other at the end of the protocol yield
eigenvalues en(0) and em(τ) of H(λ(0)) and H(λ(τ)).

w e = em(τ)− en(0) =⇒ fluctuation theorems.

H(λ(t)) =
∑

n

en(t)Πn(t)

Πn(t): Projection operator on the eigenstate of H(λ(t)) with
eigenenergy en(t).

J. Kurchan, arXiv:cond-mat/0007360 (2000);
H. Tasaki, arXiv:cond-mat/0009244 (2000);

P. Talkner, E. Lutz, P. Hänggi, Phys. Rev E 75, 050102 (2007).



2. Power-based work:
Requires a continuous measurement of power.
E.g. for H(λ) = H0 + λQ, a continuous observation of the
generalized coordinate Q is required leading to a freezing of the
systems dynamics in an eigenstate of Q.

wp
N =

N∑
k=1

λ̇(tk )qαk

τ

N − 1
, Q =

∑
α

qαΠQ
α

Fluctuation theorems hold only if [H0,Q] = 0 or equivalently
[H(λ(t)),H(λ(s))] = 0 for all t, s ∈ (0, τ).
Hence the equivalence of the power- and energy-based work
definitions for classical systems fails to hold in quantum mechanics.



Example: Landau-Zener

H(t) =
vt

2
σz + ∆σx , −τ/2 ≤ t ≤ τ/2

possible work-values:
We = {−E0, 0,E0} , E0 =

(
(vτ/2)2 + ∆2

)
)1/2 energy-based

We =

{
vτ

2(N + 1)
g , g = −N,−N + 2, . . . ,N

}
power-based
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v = 5∆2/~, τ = 20~/∆

N = 10, 102, 103, 104, energy based.

B.P. Venkatesh, G. Watanabe, P. Talkner, New J. Phys. 17, 075018 (2015).



Work pdf from two energy measurements

xxxxxxxxxxxxxxxxxxxxxxx

pΛ(w) =
∑
n,m

δ
(
w − em(τ) + en(0)

)
pΛ(m, n) : work pdfxx

H(λ(t)) =
∑

n

en(t)Πn(t) spectral rep.xx

pΛ(m, n) = TrΠm(τ)UΛΠn(0)ρ(0)Πn(0)U†Λ joint prob.xx

Λ = {λ(t)|0 ≤ t ≤ τ} : protocolxx

UΛ = Uτ,0(Λ) , i~
∂

∂t
Ut,s(Λ) = H(λ(t))Ut,s(Λ) , Us,s(Λ) = 1xx



Crooks relation, pΛ(w)=e−β(∆F−w)pΛ̄(−w), follows from
two requirements

(i) The diagonal elements of the initial states of the forward and
the backward process are both given by Boltzmann factors for the
respective parameters λ(0) and λ(τ) and same temperature β−1,
i.e. the diagonal elements of the respective density matrix ρ(t) is
given by

Πn(t)ρ(t)Πn(t) = Z−1(t)e−βen(t)Πn(t)

Z (t) =
∑

n

e−βen(t)dn(t) t = 0, τ

dn(t) = TrΠn(t) degeneracy of en(t)

(ii) Time-reversal invariance



time-reversal invariance

H(λ(t)) = θH(ελλ(t))θ†

=⇒
Us,t(Λ) = U−1

t,s (Λ) = θ†Uτ−s,τ−t(Λ̄)θ

D. Andrieux, P. Gaspard, Phys. Rev. Lett.

100, 230404 (2008).

PΛ(m|n)dn(0) = PΛ̄(n|m)dm(τ) , generalized detailed balance

PΛ(m|n) = TrΠm(τ)UΛΠn(0)U†Λ/dn(0) , transition probability

dn(t) = TrΠn(t) , t = 0, τ : # of states with en(t)

gdb + canonical initial states ⇔ Crooks relation

P. Talkner, M. Morillo, J. Yi, P. Hänggi, New J. Phys. 15, 095001 (2013).



Experiments
The classical fluctuation relations are experimentally confirmed for
mechanical, electrical and molecular systems and are the basis of a
method to determine free energy differences.
In quantum systems, projective energy measurements pose a severe
problem.
Proposal of an experiment:
G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Phys. Rev. E 101, 070403

(2008).
First experiment:
S. An et al. Nat. Phys. 11, 193 (2015).
Alternative method avoiding projective measurements:
R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev.
Lett. 110, 230601 (2013); L. Mazzola, G. De Chiara, M. Paternostro, Phys.
Rev. Lett. 110, 230602 (2013); M. Campisi, R. Blattmann, S. Kohler, D.
Zueco, P. Hänggi, New J. Phys. 15, 105028 (2013).

Experimental confirmation:
T. Batalhão et al., Phys. Rev. Lett. 113, 140601 (2014).

canxxxxxxxCan generalized measurements be of help?



Generalized measurements

In QM the measurement of an observable A in a state ρ
(i) assigns to A a real value a with probability pa

(ii) transforms the state ρ of the system at the instant before the
measurement to a new state after the measurement:

ρpm
a = φa(ρ)/pa

The measurement operation φa : TC (H)→ TC (H) is a linear,
positive and contractive map.
Hence it can be represented as (K. Kraus, States, Effects and Operators, Springer 1983)

φa(ρ) =
∑
α

Ma
αρM

a†
α

Ma
α ∈ B(H): Kraus operators

pa = Trφa(ρ) : probability to find a



Energy measurements

H(λ(t)) =
∑

n

en(t)Πn(t)

φt
n measurement operation of the observable Πn(t).

For a projective measurement φt
n becomes

φt
n(ρ) = Πn(t)ρΠn(t) Lüders-von-Neumann rule

It then is a reproducible and error-free measurement:

φt
n(φt

n(ρ)) = φt
n(ρ) xxxxxxxxxxxxxxxxxxx reproducible

p(n|m) ≡ Trφt
n(Πm(t)/dm(t)) = δn,m error-free

If Πn(t) = |n; t〉〈n; t| a single Kraus operator suffices to represent

any error-free measurement operation, i.e. φn(ρ) = MnρM
†
n. The

Kraus operator then is of the form

Mn = |ψn(t)〉〈n; t|



Staring from a canonical initial state and using generalized energy
measurements one obtains for the work pdf

pφΛ(w) =
∑
m,n

δ(w − em(τ) + en(0))pφΛ(m, n)

pφΛ(m, n) = Trφτm (UΛφ
0
n (ρ(0))U†Λ )

= Z−1(0)
∑

n′

e−βen′ (0)Trφτm (UΛφ
0
n (Πn′(0))U†Λ )

For a class of “typical” protocols with protocol and temperature
independent energy measurements the validity of the Crooks
relation

pφΛ(w) = e−β(∆F−w)pφ̄
Λ̄

(−w)

excludes all energy measurement operations but projective ones.
For the proof of a similar statement see
B.P. Venkatesh, G. Watanabe, P. Talkner, New J. Phys. 16, 015032 (2014).



Continuous energy measurements
Gaussian energy measurement

ME (t) =
1

(2πµ2)1/4
exp

(
1

4µ2
(H(λ(t))− E )2

)
M†E (t) = ME (t)

Gaussian failure distribution:

pt(E |n) = TrM2
E (t)Πn(t)/dn(t)

=
1√

2πµ2
exp

(
1

2µ2
(en(t)− E )2

)
with variance µ2 which is independent of n.
Joint pdf to find the energy E and E ′ in the beginning and at the
end of the protocol Λ, respectively, for a canonical ρ0

pGauss
Λ (E ′,E ) = TrM2

E ′(τ)U(Λ)ME (0)ρ(0)ME (0)U†(Λ)

=
∑
m,n

pτ (E ′|m)p0(E |n)pΛ(m, n)



Work pdf:

pGauss
Λ (w) =

∫
dE ′dEδ(w − E ′ + E )PGauss

Λ (E ′,E )

=

∫
dw ′√
4πµ2

e−(w−w ′)2/(4µ2)pΛ(w)

Generalized Crooks relation

pGauss
Λ (w − βµ2) = e−β(∆F−w)pGauss

Λ̄
(−w − βµ2)

Generalized Jarzynski equality:

〈e−βw 〉 = e−β(∆F−µ2β)

G. Watanabe, B.P. Venkatesh, P. Talkner, Phys. Rev. E 89, 052116 (2014).



Work meter

Device proposed by De Chiara, Roncaglia and Paz, (New J. Phys.
17, 035004 (2015)) gives work by a single measurement.

UI = e iκH(λ(0))P/~

ŨI = e iκH(λ(τ))P/~

UE ≡ UΛ , ρ = ρ(o)

P: momentum conjugate to the pointer-position X =
∫
dx x Qx ,

Qx = |x〉〈x |.

pX
Λ (x) = TrS+PQx ŨIUΛU

†
I ρ(0)⊗ σ0UIU

†
ΛŨI

=
∑

m
n,n′

pΛ(m, n, n′)σ0(x − κwm,n, x − κwm,n′)

pΛ(m, n, n′) = TrS Πm(τ)UΛΠn(0)ρ(0)Πn′(0)U†

σ0(x , y) = 〈x |σ0|y〉 , wm,n = em(τ)− en(0)



Gaussian pointer

Gaussian pure state as initial state of the pointer:

ψ0(x) =
1

(2πµ2)1/4
e−x2/(4µ2) ⇒ σ0(x , y) =

1√
2πµ2

e−(x2+y2)/(4µ2)

〈x〉0 = 0, hence w = x/κ is an unbiased work estimate

ppointer
Λ (w) =

∑
m

n,n′

1√
2πµ2

w

e
− 1

8µ2
w

[en(0)−en′ (0)]2

× e
− 1

2µ2
w

[w−em(τ)+ 1
2

(en(0)+en′ (0))]
2

pΛ(m, n, n′)

µw =
µ

κ



Special cases

(1) Stationary initial state: [H(λ(0)), ρ(0)] = 0 gives

pΛ(m, n, n′) = TrΠm(τ)UΛΠn(0)ρ(0)Πn′(0)

= pΛ(m, n)δn,n′

ppointer
Λ (w) =

∑
m,n

1√
2πµ2

w

e
− 1

2µ2
w

[w−em(τ)+en(0)]2

=

∫
dw ′

1√
2πµ2

w

e
− 1

2µ2
w

(w−w ′)2

pΛ(w ′)



(2) accurate measurement

ppointer
Λ (w) =

∑
m

n,n′

1√
2πµ2

w

e
− 1

8µ2
w

[en(0)−en′ (0)]2︸ ︷︷ ︸
→ δn,n′ for µw→0

× e
− 1

2µ2
w

[w−em(τ)+ 1
2

(en(0)+en′ (0))]
2

pΛ(m, n, n′)

In the limit of accurate measurements µw = µ
κ → 0 the

non-diagonal contributions with n 6= n′ are suppressed and the
remaining Gaussian weights approach delta-functions.

ppointer
Λ (w)→ pΛ(w) for µw → 0



(3) weak measurement

ppointer
Λ (w) =

∑
m

n,n′

1√
2πµ2

w

e
− 1

8µ2
w

[en(0)−en′ (0)]2︸ ︷︷ ︸
→ 1 for µw→∞

× e
− 1

2µ2
w

[w−em(τ)+ 1
2

(en(0)+en′ (0))]
2

pΛ(m, n, n′)

For a weak measurement, large µw = mu
κ the distribution of

becomes Gaussian with mean value

〈W 〉weak = TrH(λ(τ)UΛρ(0)U†Λ − TrH(λ(0))ρ(0)

and variance µ2
w .

In contrast, in the accurate limit one obtains

〈W 〉 =
∑

n

TrH(λ(τ)UΛΠn(0)ρ(0)Πn(0)U†Λ − TrH(λ(0))ρ(0)



Example

Two-level system undergoing a sudden quench Hi → Hf , with

Hi =
εi

2
σz , Hf =

εf

2
σx

initial density matrix (in σz -basis):

ρ(0) =

(
p q
q∗ (1− p)

)
, p(1− p) ≥ |q|2

(a) (b)

0

0.5

1

−2 0 2

p
p
o
in
te
r

Λ
(w
/ε

i)
ε i

w/εi

0

0.25

0.5

−2 0 2

w/εi

p = 0.7, εf /εi = 2
(a)
q = 0,
µ2

w/ε
2
i = 0.01, 0.1, 1

(b)
q = qm, 0, −qm
qm =

√
p(1− p) ≈ −.458

µ2
w/ε

2
i = 0.1



−0.5

0

0.5

1

0 1 2 3 4

〈w
〉/
ε i

σ2
w/ε

2
i

p = 0.7, εf /εi = 2
q = ±qm, 0.5qm, 0, −0.5qm

qm =
√

p(1− p) ≈ −0.458

xxx



Conclusions

I For projective measurements and “typical” non-degenerate
work-values the Crooks relation is equivalent to a generalized
detailed balance relation.

I Power-based work measurements do not yield meaningful
results for quantum systems.

I For non-degenerate work- and energy-values the Crooks
relation is only valid for protocol-independent measurements if
they are projective.

I Continuous measurements with Gaussian measurement
operators and constant variance obey modified fluctuation
relations with protocol-independent modifications.

I The De Chiara-Roncaglia-Paz “work-meter” yields same
results as for projective measurements in the accurate limit
and the average work as difference of average energies in the
weak limit.



Conclusions (cont.)

not discussed

I Fluctuation relations for open quantum systems

I Steady state fluctuation relations



A no-go theorem

Definition
A protocol is typical if the eigenvalues of the initial and final
Hamiltonians H(λ(t)) =

∑
m em(t)Πm(t), t = 0, τ satisfy the

following three conditions:
(A) Any allowed work w corresponds to exactly one pair m, n with
w = em(τ)− en(0).
(B) The energy-eigenvalues en(0) and em(τ) are non-degenerate.
(C) Non-degeneracy of energy distance:
en(t)− en′(t) = ek (t)− ek ′(t) → n = k , n′ = k ′.

Theorem
Energy measurement operations φ

(t)
m that are independent of

temperature and of the force protocol and, for typical protocols,
lead to work statistics satisfying the Crooks relation are always
projective: φt

m(ρ) = Πm(t)ρΠm(t).

A similar statement starting from slightly different condition but
leading to the same result was proved in



A no-go theorem (cont.)

B.P. Venkatesh, G. Watanabe, P. Talkner, New J. Phys. 16, 015032 (2014).



Sketch of a proof of the no-go theorem

With two generalized energy measurements φt
n the probability

density of work becomes:

pφΛ(w) =
∑
m,n

δ(w − em(τ) + en(0))pφΛ(m, n)

pφΛ(m, n) = Trφτm(UΛφ
0
n(ρ(0))U†Λ)

= Z−1(0)
∑

n′

e−βen′ (0) Trφτm(UΛφ
0
n(Πn′(0))U†Λ)︸ ︷︷ ︸

≡ qΛ(m, n|n′)dn′(0)

Further, we require the validity of the Crooks relation

pφΛ(w) = e−β(∆F−w)pφ̄ ¯Λ(w)

p̄hi
t
n(ρ) = θ†φt

n(θρθ†)θ



Sketch of a proof of the no-go theorem (cont.)

If an allowed work value uniquely determines a pair of initial and
final energies, as it is typically the case, then

Crooks relation⇔ Z (0)eβen(0)pφΛ(m, n) = Z (τ)eβem(τ)pφ̄
Λ̄

(n,m)

∑
n′

eβ(en(0)−en′ (0))qΛ(m,n|n′)dn′(0)︸ ︷︷ ︸
independent of β

=
∑
m′

eβ(em(τ)−em′ (τ))qΛ̄(n,m|m′)dm′(τ)︸ ︷︷ ︸
independent of β



∑
n′

eβ(en(0)−en′ (0))qΛ(m,n|n′)dn′(0)︸ ︷︷ ︸
independent of β

=
∑
m′

eβ(em(τ)−em′ (τ))qΛ̄(n,m|m′)dm′(τ)︸ ︷︷ ︸
independent of β

Typically, also

en(t)− en′(t) = ek (t)− ek ′(t) ⇒ n = k , n′ = k ′

holds. This implies

qΞ(m, n|n′) = qΞ(m|n)δn,n′ for Ξ = Λ, Λ̄

hence, φ0
n and φ̄τm error-free operations if they are Λ-independent



From the sums remain the n′ = n and m′ = m terms yielding the
gdb relation

qΛ(m|n)dn(0) = qΛ̄(n|m)dm(τ)

For Λ-independent operations this implies

φt∗
m (1) = φt

m(Πm(t)) , t = 0, τ (?)

φt∗
m is the dual map: Truφt

m(ρ) = Trφt∗
m (u)ρ for all bounded

operators u and density matrices ρ.
For the Kraus operators Mm

α (t) defined as

φt
m(ρ) =

∑
αM

m
α (t)ρMm†

α (t)) with Mm
α (t) = Mm

α (t)Πm(t)) (?)
implies ∑

α

Mm†
α (t)Mm

α (t) =
∑
α

Mm
α (t)Mm†

α (t)

yielding for non-degenerate eigenstates (dm(t) = TrΠm(t) = 1)
that there is only a single Mm

α (t) = Πm(t): measurement must be
projective.


