Perspectives and challenges of accelerator-based ultrafast electron diffraction(UED) and microscopy(UEM)

Dao Xiang(向导) Shanghai Jiao Tong University

10/29/2015

- **Introduction**
- **keV UED/UEM: why and how**
- **MeV UED/UEM: why and how**
- **Challenges of MeV UED/UEM**
- **UED/UEM center at SJTU**
- **Summary**

The most important part of science: observation

Ribosome, ATP, GPCR etc.; 1997, 2003, 2006, 2009, 2012 Nobel prize in Chemistry

Quasi-crystal, super-resolved fluorescence microscopy; 2011 and 2014 Nobel prize in Chemistry

The most important part of science: observation

Galaxy Atom

The 3D static world is no longer a mystery to us

The BIG challenge

- **All matter around us consists of atoms and electrons; their structure determines its properties.**
- **Any reaction or process is essentially defined by movement paths on an atomic level.**
- **Understanding the functionality requires observation with both high spatial and temporal resolution.**

Horse galloping (Muybridge/Stanford, 1878) **Molecular rotation (Wu, ECNU)**

Thymine dimer splitting (Zhong, OSU)

Pump-probe technique for ultrafast science

- **A pumping pulse to initiate a dynamical process**
- **A pumping pulse drives the system out of equilibrium state**
- **Probing pulse measures the response**
- **Pumping pulse defines time zero**
- **Changing time delay to obtain a complete picture**

Three probes in ultrafast science

- **Introduction**
- **keV UED/UEM: why and how**
- **MeV UED/UEM: why and how**
- **Challenges of MeV UED/UEM**
- **UED/UEM center at SJTU**
- **Summary**

- **J.J. Thomson: electrons are particles (1906); G.P. Thomson: electrons are NOT particles (1937).**
- **Structure information encoded in the diffraction pattern**

- **J.J. Thomson: electrons are particles (1906); G.P. Thomson: electrons are NOT particles (1937).**
- **Structure information encoded in the diffraction pattern**

- **J.J. Thomson: electrons are particles (1906); G.P. Thomson: electrons are NOT particles (1937).**
- **Structure information encoded in the diffraction pattern**
- **Laser-pump electron-probe technique**

- **J.J. Thomson: electrons are particles (1906); G.P. Thomson: electrons are NOT particles (1937).**
- **Structure information encoded in the diffraction pattern**
- **Laser-pump electron-probe technique**

With positions of the ball and sportsman recorded, one can reproduce the process of jump-serving in volleyball.

Phase transition

An atomic view of phase transition in Aluminium *Science (2003)*

Melted in a flash!

"How does the laser-excited, ordered solid know how to become disordered without letting its atoms bounce around a couple of times to find the new ground state?"

> **Bismuth Disorder & weak bond**

Nature (2009)

Strongly correlated electron materials

A step closer to visualizing the electron-phonon interplay in real time **Bi2212: anisotropy electron–phonon**

coupling within the CuO2 plane

Y. L. Chen, W. S. Lee, and Z. X. Shen¹ Departments of Applied Physics and Physics, and SLAC Photon Science, Stanford University, Stanford, CA 94305

Strongly correlated electron materials

 \overline{M}

8

1T-TaS2, tr-ARPES 1T-TaS2, UED

Pump-Probe delay (ps)

 Ω

Chemical bond forming and breaking

keV UED resolution limit

$$
(\Delta t)^2 = (\Delta t_{laser})^2 + (\Delta t_e)^2 + (\Delta t_{VM})^2 + (\Delta t_{jit})^2
$$

 t/x

UEM: Ultrafast electron microscope

Transmission EM

- **Gun: thermionic or field emission**
- **Acceleration with DC field**
- **Voltage: <200 kV (routine); 200 ~ 500 kV (medium energy); 500 kV ~ 3 MV (high voltage)**
- **Spatial resolution: down to 50 pm**

5 th order aberration corrected TEM (2009)

UEM: Ultrafast electron microscope

Stroboscopic

- **Modified from a commercial TEM**
- **Beam energy: <200 keV**
- **Laser triggered photocathode gun**
- **Pumping laser**
- **~ 1 electron per pulse (multiple shot)**
- **Temporal resolution: ~100 fs**
- **Spatial resolution: ~0.1 nm**
- **Integration over 10⁸ shots**
- **Perfectly reversible process**

Caltech's 4D-EM

UEM: Ultrafast electron microscope

Single shot

- **Modified from a commercial TEM**
- **Beam energy: ~200 keV**
- **Laser triggered photocathode gun**
- **Pumping laser**
- **~ 10⁸ electrons per pulse**
- **Temporal resolution: ~10 ns**
- **Peak current: ~1 mA**
- **Spatial resolution: ~10 nm**
- **Resolution limited by space charge and beam brightness**

LLNL's DTEM

Normalized selected area intensity

1000

2000

Time (ns)

3000

4000

5000

 $\overline{2}$ $\overline{4}$ $6\overline{6}$ 8

 $\mathbf{0}$

Real-time imaging of mechanical motions of nanostructures (MEMS/NEMS)

Nano Lett. 11, 2183 (2011)

 $\mathbf{0}$

 $\overline{0}$

 $\overline{2}$

 $\overline{4}$

Cantilever Length (µm)

 66

8

 10

Frequency (MHz)

 12

 14 16 18 20

- **Introduction**
- **keV UED/UEM: why and how**
- **MeV UED/UEM: why and how**
- **Challenges of MeV UED/UEM**
- **UED/UEM center at SJTU**
- **Summary**

UED/UEM goes relativistic!

The electric force and magnetic force cancel if v=c

1 MV TEM@ Beijing

3 MV TEM@ Osaka

F=q[E+(v×**B)]**

The quest for higher resolution

What is an accelerator

Use electromagnetic fields to propel charged particles to high speeds

Rutherford's alpha scattering experiment

I have long hoped for a source of positive particles more energetic than those emitted from natural radioactive substances.

Ernest Rutherford, 1928

On average accelerator science has contributed to a physics Nobel Prize winning research every 2.9 years since 1938.

Applications of accelerators

Accelerator-based MeV UED

First proposals and feasibility studies

Journal of the Korean Physical Society, Vol. 48, No. 3, March 2006, pp. 390~396

Potential of Femtosecond Electron Diffraction Using Near-Relativistic Electrons from a Photocathode RF Electron Gun

X. J. WANG

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA

D. XIANG

Department of Engineering Physics, Tsinghua University, Beijing, China

T. K. KIM and H. IHEE*

Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology, Daejeon 305-701

(Received 20 December 2005)

Wang, BNL LDRD, 2000; Wang et al., PAC03; Xiang et al., PAC05; Wang et al., 2006

Accelerator-based MeV UED: world-wide efforts

Accelerator-based MeV UED: applications

Phase transition

UCLA, 2010; Osaka U, 2013; SJTU, 2014; THU, 2014; SLAC, 2015

BNL-FSU-SJTU Collaboration, 2013 SLAC, 2015

Superlattice 2D material and gas phase sample

~100 fs resolution

Accelerator-based MeV UEM

Conceptual design with superconducting solenoids

- **S: solenoid**
- **C: condenser lens**
- **O: objective lens**
- **I: intermediate lens**
- **P: projection lens**
- **D: detector**

Formulation with accelerator terminology

- **Imaging condition:** $R_{12} = R_{34} = 0$
- **Chromatic aberration: T¹²⁶**
- **Spherical aberration: U₁₂₂₂**

$$
T_{ijk} = \sum_{m=1}^{6} R_{im}^{(2)} T_{mjk}^{(1)} + \sum_{m,n=1}^{6} T_{imn}^{(2)} R_{mj}^{(1)} R_{nk}^{(1)}
$$

Xiang et al., Nucl. Instrum. Methods A, 759, 74 (2014)

- **Introduction**
- **keV UED/UEM: why and how**
- **MeV UED/UEM: why and how**
- **Challenges of MeV UED/UEM**
- **UED/UEM center at SJTU**
- **Summary**

1. Increase rep-rate to 1 kHz and beyond

- **1 kHz pumping laser widely available**
- **keV UED typically operates at 1 kHz**
- **Reduce data acquisition time and enable new science**

LCLS gun designed for 120 Hz at 120 MV/m; ~500 Hz with 60 MV/m; Roughly a factor of 2 to go.

2. Reducing beam emittance to ~10 nm

$$
\triangle r = C_s \theta^3; \quad \triangle r = C_c \theta \triangle E/E; \quad \epsilon = \sigma_x \sigma_x.
$$

- **Reduce thermal emittance**
- **Reduce space charge induced emittance growth**

E

$$
\phi(x, y, z) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(x', y', z')dx'dy'dz'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{1/2}}.
$$

Vary cathode and laser parameters to control the photoelectron distribution

Laser shaping to produce uniform (ellipsoidal) beam

3. Reducing beam energy spread to <10-4

Remove quadratic energy chirp with a harmonic cavity (cos5⁰=0.996) Excellent RF and Low-level RF system

Hemsing, Stupakov, Xiang, Zholents, Rev. Mod. Phys. 86, 897(2014)

4. High beam density and space charge effect

- **Rose theorem: >100 electrons/pixel to make a useful image**
- Ultimate beam density (e⁻/nm³) limited by space charge (SC) effect
- **Spatial resolution also limited by stochastic space charge effect**

Handbook of charged particle optics

Li and Musumeci, PRA, 2, 024003 (2014)

10 nm & 10 ps seems to be achievable; extremely challenging to push spatial resolution to ~1 nm while keeping ps temporal resolution.

- **Introduction**
- **keV UED/UEM: why and how**
- **MeV UED/UEM: why and how**
- **Challenges of MeV UED/UEM**
- **UED/UEM center at SJTU**
- **Summary**

MeV UED/UEM center at SJTU

Construction of a new experimental hall

06/2014 08/2014 09/2014

10/2014 11/2014 12/2014

Construction of a new experimental hall

Construction of a new experimental hall

Development of 1 kHz photocathode rf gun

Field distribution

 $\frac{40.2628}{42.2044} + \frac{44.146}{46.0877} + \frac{48.0293}{49.971} + \frac{51.9126}{53.8542} + \frac{55.7959}{58.0}$

- **2.4 cell gun 9 Cooling channels Max temperature rise 18⁰C**
- **Multipacting OK**

SJTU/SINAP/ANL/LBNL Collaboration

英

Development of high-field solenoid lens

C^c ~C^s ~*f*

$$
\frac{1}{f} = \frac{e^2}{4\gamma^2 m^2 v_z^2} \int B_z^2 \mathrm{d}z
$$

Schematic of the HT_c superconducting lens HTS lens by IHEP

Commissioning the test facility

Photocathode rf gun based MeV UED test facility

High quality Al and Au diffraction pattern (Fu et al., Rev. Sci. Instru. 2014)

Commissioning the test facility

Finding time-zero with the perturbation from laser-induced plasma

MeV UED pump-probe experiment (Zhu et al., CPL, 2014)

Commissioning the test facility

Simulation Condenser-objective lens

Shoot for 10-19 s*m with our user facility

Coherent diffraction imaging

Schematic layout of coherent diffraction imaging

- **Start with a random phase set;**
- **Combine this random phase set with the measured Fourier magnitude;**
- **Apply an inverse FFT to get an initial image;**
- **Apply constraints to get an updated image;**
- **Apply FFT and replacing its magnitude with the measured data;**

Algorithm

■ Repeat.

Coherent diffraction imaging

Schematic layout of coherent diffraction imaging

Sample Diffraction Reconstruction Algorithm

Coherent diffraction imaging

- **Introduction**
- **keV UED/UEM: why and how**
- **MeV UED/UEM: why and how**
- **Challenges of MeV UED/UEM**
- **UED/UEM center at SJTU**
- **Summary**

Summary

- **Historically particle accelerators are instrumental for high energy physics and photon sciences.**
- **Accelerator based MeV UED/UEM hold great potential in solving the challenges in probing matter at ultrafast temporal and ultrasmall spatial scales.**
- **Potentially better performance than keV UED/UEM.**
- **Compact facility, yet with rich physics and grand challenges.**
- **Several MeV UED user facilities are being built.**
- **Initial results are very encouraging.**
- **The fun just begins!**

Thanks! We are hiring!

11 N I

冊冊

同时时时间

冊

7 11 11 11 11

\$ \$

Īī ūū ĪĪ īī

五五